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I. SIMULATION METHODS

Our model is based on that of Rabani et al. [1]. We model the colloidal suspension as an

incompressible ABC mixture on a 2D square lattice. Colloids C are discretized hard discs (HD)

with a radius of R lattice sites that can undergo translational motion on the square lattice. The

hard-disc Hamiltonian HC is zero for non-overlapping configurations, and infinite if any pair of

colloids overlap. Every lattice site i has an occupancy number ni = 1 if it is occupied by a colloidal

disc, and 0 if it is available for an A or a B solvent molecule. For sites with ni = 0 we associate

an occupancy number si = −1 if the site is occupied by A, and si = 1 if by B. We consider only

nearest neighbour interactions and assign an energy penalty ε/2 > 0 for every nearest neighbour

AB pair to drive AB demixing at sufficiently low temperatures and an energy gain of −αε/2 with

α ≥ 0 for every BC pair to mimic preferential adsorption of solvent B on the colloid surfaces. The

total Hamiltonian thus reads

H = HC +
ε

4

∑

〈i,j〉
(1− sisj)(1− ni)(1− nj)−

αε

4

∑

〈i,j〉
ni(1 + sj)(1− nj) (1)

where the summation runs over the set of distinct nearest neighbour pairs ij, and for every

lattice site i, ni = 1 is it is occupied by a colloidal disc, and 0 if it is available for an A or a B
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solvent molecule. For sites with ni = 0 we associate an occupancy number si = −1 if the site is

occupied by A, and si = 1 if by B.

We performed simulations in an elongated simulation box of 256 × 512 sites in the fixed

(η, τ,∆µs)-ensemble. For packing fractions η of hard discs that lie within the binodal curve,

two-phase coexistence will be observed in the simulation box. The packing fractions of the co-

existing phases can be obtained from the resulting density profiles of the hard discs. In order to

determine the G-L coexistence more accurately we treat the colloids grand canonically using the

staged-insertion technique [2] in combination with the transition matrix (TM) MC method, see

e.g.[2–4].

The length L of the simulation box in all our simulations is at least 4 times the correlation length

of the bulk solvent reservoir at the composition xc = 0.5, (the maximum correlation length of the

solvent reservoir at a fixed τ). We have also taken care to simulate for time scales much longer

that the slowest correlation time in the system. The GC-TMMC simulation results reported in our

manuscript are for a system size L = 256. A typical GC-TMMC run, to locate one coexistence

point for the L = 256 system, takes ' 600 CPU hours. For a few state points we compared the

results for two different system sizes, L = 256 and L = 512, and found the coexisting densities to

be the same up to the third decimal place. The L = 512 system required ' 5000 CPU hours to

simulate one state point. It is not feasible to perform TMMC simulations in system sizes larger

than L = 512.

II. MEAN FIELD PHASE DIAGRAM : 3D REPRESENTATION

Within a mean-field approximation we analyzed the Helmholtz free energy associated with the

Hamiltonian of our ABC model, which can be decomposed as FMF = FC + FAB + UBC , with (i)

the pure-colloid contribution FC(η, T ) (ii) the mean-field free energy FAB(x, η, T ) of the binary

AB mixture in the free space in between the colloids (with fractions 1−x′ and x′ ≡ x/(1− η) of A

and B, respectively), and (iii) the average adsorption energy UBC of the B solvent on the colloid

surfaces. This yields, up to irrelevant constants,

FMF (η, T, x) = FC(η, T )+
2εx(1− x− η)

(1− η)
+kBT

[
x ln

x

1− η + (1− x− η) ln

(
1− x− η

1− η

)]
−Zαε

vc

xη

1− η
(2)

where Z ' 2πR is the effective colloidal coordination number and where vc ' πR2 is the

effective volume (area in 2D) of the colloid. For FC(η, T ) we employ the hard-disc free energy
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from Ref. [5] for the fluid phase, and from Ref. [6] for the solid phase. The phase diagram shown

in Fig. S1 is based on Zα = 32 and vc = 1000, which do not correspond to values used in our

simulation studies. Our objective here is to attempt to understand the topology of the simulation

phase diagrams qualitatively and investigate the possibility of a lower (metastable) G-L critical

point.

In Fig. S1, we plot the resulting phase diagrams for various τ > 0, which reveal a closed-loop

immiscibility gap and two G-L critical points. We plot three slices of the full phase diagram and

the locus of critical points of the ternary mixture. This is shown as the dark green curve in the

figure, and it smoothly approaches the critical point of the pure solvent mixture τMF
c = 0.0 (blue

diamond symbol). The locus of critical points indeed continues for τ < τMF
c . For clarity, we do

not present this. The pale green curve is the projection of the critical line on the η − τ plane.

The line of colloidal G-L critical points in our simulations should also behave in a similar manner.

Furthermore the mean-field theory predicts that at a fixed temperature, there exists an upper

G-L critical point and a lower metastable G-L critical point. On increasing temperature the two

critical points approach each other, merge and disappear at a certain temperature. This point is

indicated by the olive green diamond symbol in Fig. S1. We also observe coexistence of two crystal

phases with the same (hexagonal) symmetry but different lattice spacings, also terminating at a

critical point. The topology of the mean-field phase diagram and its τ -dependence are remarkably

consistent with that obtained from simulations.

III. CORRELATION FUNCTIONS

We define the two-point correlation functions as,

gαβ(r) =
N

〈Nα〉 〈Nβ〉

〈 ∑

{i,j|ri−rj=r}
nαi n

β
j

〉
(3)

where nαi represents the occupancy of species α at site i, Nα is the total number of sites filled

with species α, and N =
∑
αNα, is equal to the lattice size. It is now well-established that in fluid

mixtures where all species interact via short range potentials, all structural correlations should

decay with the same correlation length [7]. In Fig. S3, we plot the quantity log |gαβ(r)− 1|, for

the pairs BB, BC and CC. It is evident that all correlations do decay with the same correlation

length, as expected [7], illustrating that the correlations of all species of our ternary mixture remain

coupled.
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FIG. S1. Phase behavior of the ternary mixture as predicted by mean-field theory: Binodals

of the ternary colloid solvent system as calculated within mean-field theory plotted in the ∆µs vs η vs τ

representation. We show slices of the full phase diagram for three fixed temperatures τ = 0.025 (black),

τ = 0.05 (dark red ), and τ = 0.075 (blue). The gray, pale red and pale blue curves correspond to metastable

colloidal gas-liquid coexistence, which also terminates at a critical point. The dark green curve is the locus

of critical points of the ternary mixture, this approaches smoothly the critical point of the solvent denoted

by the blue diamond dot in the limit τ → τMF
c = 0.0, η = 0, ∆µs = 0. For each τ we show the upper

(stable) and lower (metastable) G-L critical points as indicated by the orange diamond symbols. The olive

green diamond symbol corresponds to the point where the upper and lower critical points of the ternary

system merge and disappear. The dashed orange lines (guide to the eye) connect the critical points to their

projection in the η − τ plane. The projection of the locus of critical points in the η − τ plane is given by

the pale green curve.
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FIG. S2. a) Projections of the binodals of the ternary colloid-solvent system as calculated within mean-field

theory for three fixed temperatures τ = 0.025 (black), τ = 0.05 (dark red ), and τ = 0.075 (blue) (same as

shown in figure S1), on the ∆µs - η plane. b) Phase diagrams of the ABC model computed with simulations

for three fixed temperatures τ = 0.025 (black), τ = 0.05 (dark red ), and τ = 0.075 (blue) (same as Fig. 3a

of our manuscript).

0 5 10 15 20 25 30 35 40

r/a

−12

−10

−8

−6

−4

−2

0

2

lo
g
|g α

β
(r

)
−

1|

gBB

gBC

gCC

FIG. S3. The partial pair correlation functions plotted as log |gαβ(r)− 1| vs distance, normalized by the

lattice spacing a, at temperature τ = 0.025, colloid packing fraction η = 0.4 and chemical potential ∆µs =

−0.005. All three correlation functions exhibit the same decay length and period, as predicted by [7].
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FIG. S4. a) Partial structure factor SBB computed at τ = 0.025, ∆µs = −0.00315, and different values

of colloid packing fraction; η = 0.0 (green), η = 0.0345 (brown), η = 0.0862 (blue),η = 0.1724 (orange)

and η = 0.3276 (cyan). The structure factors, were shifted by 0.5 in log-scale for clarity. The inset shows

the G-L binodal for τ = 0.025 (black diamond symbols). b) The maximum value of the structure factor

SBB(k → 0) vs. the packing fraction η of the colloids.

IV. STRUCTURE FACTORS

At the G-L critical points, whose location can be gleaned from Fig. 3 b) of the paper the

solvent-solvent (BB), colloid-colloid (CC) and solvent-colloid (BC) correlations decay with the

same, diverging correlation length. Here in figure S4 a) we show the BB structure factor defined

as SBB(k) = (1/N)
〈
nkn−k

〉
, where nk, is the Fourier transform of the solvent occupancy profile

[8]. We compute SBB(k) at a fixed temperature τ = 0.025, and solvent chemical potential ∆µs =

−0.00315, fixed very close to the critical value. We present results at several packing fractions of

the colloid η, indicated by dots in the phase diagram, shown in the inset of Fig. S4 a). The long

wavelength limits of the partial structure factors Sαβ(k = 0) diverge on approaching the critical

point. In Fig. S4 b) we plot the limit SBB(k = 0), obtained from a linear extrapolation of the

simulation data, vs η, which shows a maximum corresponding to the state closest to the G-L critical

point. Calculations of SBB(k → 0) vs η, close to the critical value, can yield a rough estimate of

the G-L critical point.

V. EFFECTIVE TWO-BODY INTERACTIONS

The effective two-body interactions were computed by simulating a system of two colloids at

fixed {∆µs, τ}. We fix the position of one colloid at the origin and measure the probability of
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finding the other at position {x, y}. We use the Transition Matrix Monte Carlo technique to make

sure the colloids sample the entire range of distances {−Lmax ≤ x ≤ Lmax,−Hmax ≤ y ≤ Hmax}.
The two body potential U(x, y) is obtained as U(x, y) = −kT log(P (x, y)/P (∞,∞)).
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FIG. S5. Effective two body potential between two colloids suspended in a solvent at τ = 0.05 for a)

∆µs = −0.01 and b) ∆µs = −0.5. The area in white is inaccessible due to the hard core repulsion.
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FIG. S6. Effective two-body interactions between a

pair of colloids at ∆µs = 0, α = 19. ξ is the correlation

length of the solvent.

The effective colloid-colloid interaction of

the discretized colloids (refer to Fig. 1 in paper)

in our lattice model is anisotropic; the strength

of the interaction close to contact varies sub-

stantially. In figure S5 we plot the two-body

potential measured at ∆µs = −0.01 and ∆µs =

−0.5 at temperature τ = 0.05, where it can be

seen that lattice effects are pronounced when

the range of the interaction is of the order of

1 − 3 lattice sites. While these lattice effects

play no role in G-L coexistence, they play a

significant role in G-X coexistence. The crys-

tal phase is facilitated by the colloids aligning

along the more energetically favorable directions.

The form of the effective colloid-colloid interaction between our colloidal discs depends on the

proximity of the solvent reservoir to its critical point and, to some extent, on the value of the

adsorption strength α. In the scaling regime, i.e for small values of ∆µs and τ , the functional

form of these effective interactions is known [9–11] theoretically. In Fig. S6 we plot the effective
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two-body interaction computed at ∆µs = 0 for colloids of different sizes at different temperatures.

The distance between the colloids is scaled with the correlation length of the bulk reservoir. Our

data shows good scaling behaviour, except at short distances where scaling is no longer applicable

and where lattice effects become important. That we find good scaling gives us confidence that

our simulations capture correctly the fluctuations responsible for the Casimir attraction.

VI. MOVIE INFORMATION

Movie I (SI-movie-01.mov) shows a ternary ABC mixture with neutral colloids (R = 6, α = 0,

Nc = 64), with no preference for solvent species A or B, at colloid packing fraction η = 0.11

and solvent composition x = (1 − η)/2 (to the right of the dashed line), in equilibrium with a

solvent reservoir (left), with composition xr = 1/2, at the same reduced temperature τ = 0.005

and reduced solvent chemical potential difference ∆µs = 0.

Movie II (SI-movie-02.mov) shows a ternary ABC mixture with colloids that strongly prefer

solvent species B ( R = 6, α = 19, Nc = 64), at colloid packing fraction η = 0.11 (to the right of

the dashed line) in equilibrium with a solvent reservoir (left), with composition xr = 1/2, at the

same reduced temperature τ = 0.005 and reduced solvent chemical potential difference ∆µs = 0.

Movie III (SI-movie-03.mov) shows a canonical ensemble simulation of a ternary ABC mixture

with Nc = 128 colloids, in a system of 256 × 512 lattice sites, at reduced temperature τ = 0.05

and reduced solvent chemical potential difference ∆µs = −0.005 (R = 6, α = 0.6). The system

exhibits a supercritical colloidal phase.

Movie IV (SI-movie-04.mov) shows a canonical ensemble simulation of a ternary ABC mixture

with Nc = 348 colloids, in a system of 256× 512 lattice sites, at reduced temperature τ = 0.05 and

reduced solvent chemical potential difference ∆µs = −0.04 (R = 6, α = 0.6). The system exhibits

colloidal gas-liquid (G-L) coexistence.

Movie V (SI-movie-05.mov) shows a canonical ensemble simulation of a ternary ABC mixture

with Nc = 580 colloids, in a system of 256× 512 lattice sites, at reduced temperature τ = 0.05 and

reduced solvent chemical potential difference ∆µs = −0.3 (R = 6, α = 0.6). The system exhibits

colloidal gas-crystal (G-X) coexistence.
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